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ABSTRACT: Global radiative feedbacks exhibit large dependence on the spatial structure of sea surface temperature
(SST) changes, which is referred to as the “pattern effect.” A Green’s function (GF) approach has been demonstrated to
be useful in identifying and understanding contributions of regional SST changes to global radiative feedbacks. Here, we
explore the ability of the GF approach in quantifying the pattern effect in an atmospheric model (AM4) and a coupled
model (CM4) recently developed at NOAA’s Geophysical Fluid Dynamics Laboratory (GFDL), including the impact of
SST changes on global-mean and local responses of key variables important to climate. Given historical SST patterns, the
GF derived from idealized experiments with SST warming patches can largely reproduce AM4 simulated global-mean and
regional responses. When AM4 is forced by SST patterns retrieved from the CM4 abrupt quadrupling of carbon dioxide
experiment, the same GF captures interannual variations of AM4 simulated global-mean responses but falls short of repro-
ducing the magnitude of the responses. A decomposition of such SST patterns into global-mean values plus remaining
anomalies helps reduce biases. Additional idealized experiments are conducted to examine the sensitivity of the GF to the
amplitude and sign of SST perturbations and to the integration time and the confidence level of the significance test. Im-
pacts of these factors on the performance of the GF are discussed.
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1. Introduction

Historical records indicate that sea surface temperatures
(SSTs) exhibit an overall warming in response to increasing
concentration of atmospheric greenhouse gases (Cheng et al.
2019). However, SST changes are not spatially uniform. Un-
certainties remain large at regional scales in terms of the mag-
nitude of warming and its spatial structure including zonal
and meridional SST gradients. Recent studies using observa-
tions and general circulation models (GCMs) showed that
warming over the eastern Pacific and Southern Oceans is de-
layed (Andrews et al. 2015; Armour et al. 2016; Luo et al.
2017). The delayed Southern Ocean warming is argued to be
shaped by the Southern Ocean’s meridional overturning cir-
culation (Armour et al. 2016). Overall, the observed warming
pattern may be modulated by natural variability (Olonscheck
et al. 2020; Watanabe et al. 2021), aerosol–cloud interactions
(Wang et al. 2021), and changes in sea surface salinity (Liu
et al. 2021), among many other factors.

While different processes contribute to the spatial structure
of SST changes, in turn, the spatial structure of SST changes
can modulate radiative feedbacks (Bony et al. 2006; Soden
et al. 2008). The sensitivity of radiative feedbacks to the spa-
tial structure (i.e., patterns) of surface warming is referred to

as the pattern effect (Stevens et al. 2016). Armour et al.
(2013) considered a local feedback framework in which local
radiative responses are only attributed to local temperature
changes. In comparison, recent studies suggest that feed-
backs exhibit large sensitivity to the spatial structure of SST
changes, which includes both local and remote effects (Rose
et al. 2014; Andrews et al. 2015; Rose and Rayborn 2016;
Zhou et al. 2016; Ceppi and Gregory 2017; Andrews and
Webb 2018). Using a single atmosphere-only model, the am-
plitude of global radiative feedback was demonstrated to vary
substantially for simulations forced by different SST patterns
with identical global-mean SST warming (Zhao 2022). In ad-
dition, the amplitude of radiative feedback can vary between
different periods (Andrews et al. 2015, 2022). The time depen-
dence of radiative feedback can be contributed by individual
components. For example, Fueglistaler and Silvers (2021)
showed that global average shortwave cloud radiative feed-
back as a function of global average surface temperature is
positive before 1970s but changes sign and becomes negative
after that. A better understanding of the observed radiative
feedback could help constrain long-term feedback (He et al.
2021).

Given the strong dependence of radiative feedbacks on the
spatial structure of SST changes, Zhou et al. (2017) proposed
a way in which the feedbacks in response to a specific warm-
ing pattern can be estimated by a Green’s function (GF) ap-
proach. They showed that this approach can largely capture
the change of cloud feedback in response to changes in atmo-
spheric CO2 concentration. Dong et al. (2019) used the GF
approach to attribute global-mean radiative feedbacks to spa-
tial patterns of SST changes. They showed that the GF ap-
proach can largely reproduce interannual variations of the

Supplemental information related to this paper is available
at the Journals Online website: https://doi.org/10.1175/JCLI-D-22-
0024.s1.

Corresponding author: Bosong Zhang, bosongzhang@gmail.
com

DOI: 10.1175/JCLI-D-22-0024.1

Ó 2023 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright
Policy (www.ametsoc.org/PUBSReuseLicenses).

Z HANG E T A L . 110515 FEBRUARY 2023

Brought to you by NOAA Central Library | Unauthenticated | Downloaded 07/19/23 06:09 PM UTC

https://orcid.org/0000-0002-0334-7128
https://orcid.org/0000-0002-0334-7128
https://doi.org/10.1175/JCLI-D-22-0024.s1
https://doi.org/10.1175/JCLI-D-22-0024.s1
mailto:bosongzhang@gmail.com
mailto:bosongzhang@gmail.com
http://www.ametsoc.org/PUBSReuseLicenses
http://www.ametsoc.org/PUBSReuseLicenses
http://www.ametsoc.org/PUBSReuseLicenses


global-mean radiative feedbacks in both the historical and the
abrupt 4 3 CO2 simulations provided their time evolution of
SSTs. They found that the global-mean net top-of-atmosphere
(TOA) radiation is more sensitive to SST warming over the
tropical western Pacific than SST warming over other regions.
However, since the GF approach requires a suite of sensitivity
simulations in a specific GCM, results retrieved from the GF
can be model dependent. An intermodel comparison project
about the GF approach using different GCMs can provide
more insights into how well the GF approach reproduces
model projections of future climate change. In addition to the
GF approach, Bloch-Johnson et al. (2020) argued that the de-
pendence of radiative feedbacks on the spatial structure of
SST changes can be estimated using multiple regression in fully
coupled models. However, as shown in Ceppi and Fueglistaler
(2021), changes in tropical radiative budget are out of phase
with El Niño–Southern Oscillation (ENSO), indicating a two-
way coupling between SST and radiation.

In this study, we apply the GF approach to a state-of-the-art
GCM and assess the extent to which several select variables
from the model’s historical simulations and future projections
can be reproduced by the GF. The GF is derived from a
suite of atmosphere-only simulations with patches of anoma-
lous SSTs added to the climatological-mean SSTs. We use
the derived GF to reconstruct climate responses from an
atmosphere-only simulation forced by historically observed
SSTs and SSTs simulated from an atmosphere–ocean coupled
simulation with abrupt quadrupling of atmospheric CO2 con-
centration. In addition to comparisons of global-mean values
between model-simulated ones and the GF reconstructed
ones, regional patterns are also examined. In terms of the sen-
sitivity experiments with patches of SST anomalies, we test
whether and how the amplitude and sign of SST anomalies
affect the performance of the GF approach. The primary goal
of this study is to evaluate and understand how the GF may
or may not reproduce model-simulated signals under different
conditions.

2. Methods

a. The Green’s function

Following Zhou et al. (2017), we use the discrete form of
the GF approach, which computes the change of a variable X
(e.g., net TOA radiation, surface air temperature, and so on)
at a grid point i in response to perturbations in SST as

DXi 5 ∑
n

j51

Xi

SSTj

DSSTj 1 «X , (1)

where DSSTj represents the change of SST at a grid point j.
The first-order term on the right-hand side of this equation
represents a linear combination of the responses at all ocean
grid points. Other second-order and higher-order terms are
denoted by the residual term «X. This framework assumes
one can emulate the model-simulated climate response of a
variable X given the term Xi/SSTj and DSSTj without run-
ning any numerical simulations. Given that the GF defined in

Eq. (1) does not consider the impact of changes in radiative
forcing, sea ice, and other components in the climate system,
the GF reconstruction is not supposed to exactly capture re-
sponses from coupled simulations. Instead, the GF here is
supposed to only capture the response due to SST anomalies
by construction. Note that the surface temperature over land
(also known as the skin temperature over land) in this ap-
proach is regarded as the “response” instead of the “forcing,”
and it is assumed to vary only with SST perturbations. It is
possible that the impact of surface temperature changes over
land is considered in a different version of the GF approach.
However, such modification complicates comparisons between
the results in this study and the prior results based on Eq. (1).
Thus, we leave potential attempts to include the impact of sur-
face temperature changes over land to future studies.

In Eq. (1), Xi/SSTj can be written as a Jacobian matrix
that is referred to as JX(i, j). In this framework, DSSTj is
needed to quantify DXi if the Jacobian matrix is available and
does not change with time. However, to compute the Jacobian
matrix, a suite of idealized experiments forced by patches of
SST anomalies are required in advance. Although the Jacobian
matrix is time independent, DSSTj can be either time-dependent
or long-term climatological values. One common practice of
visualizing the GF is to show maps of global annual-mean re-
sponses of state variables per unit SST warming in each grid
box, that is, [JX(j) ], where the overbar stands for long-term
annual mean computed from monthly mean values, and the
square bracket stands for a spatial average over the entire
globe. With the first dimension of JX(i, j) averaged out hori-
zontally, [JX(j) ] illustrates how the change of SST at a grid
point j (DSSTj) contributes to global annual-mean responses
of a variable X.

b. Experiment design

In this study, we use the Geophysical Fluid Dynamics Lab-
oratory (GFDL) atmospheric model (AM4) model (Zhao
et al. 2018a,b) to conduct perturbation experiments forced by
patches of anomalous SST. AM4 has a horizontal grid spacing
of ;100 km. The default AM4 outputs have 180 grid points in
the meridional direction and 288 in the zonal direction (i.e.,
1.08 latitude 3 1.258 longitude for the horizontal resolution).
We note that previous studies mainly apply the GF approach
to model outputs of ;28 resolution (Zhou et al. 2017; Dong
et al. 2019). In this study, we reinterpolate the default model
outputs to a lower horizontal resolution with 90 grid points in
the meridional direction and 144 in the zonal direction (i.e.,
2.08 latitude3 2.58 longitude for the horizontal resolution).

Per the definition in Eq. (1), the first dimension i and the
second dimension j represent grid boxes of varying horizontal
area due to changes in a grid’s latitude and ocean area frac-
tion. In addition, for model outputs of different horizontal res-
olutions, an intermodel comparison of the derived Jacobian
matrices is more difficult. For example, JX(i, j) tends to be
larger in magnitude in a lower-resolution model due to its
larger area of SST perturbation. To compare JX(i, j) derived
from outputs of different horizontal resolutions in a standard
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way, we propose that the actual physical area of a grid box
should be considered. In this sense, we consider

[JX( j)]
PAj

, (2)

where PAj represents actual physical area of a grid box j.
Equation (2) stands for global annual-mean responses of state
variables per unit SST warming per unit physical area. For ex-
ample, [JT( j)]/PAj is global annual-mean responses of sur-
face air temperature per unit SST warming per unit physical
area (units of K21 km22). In the rest of the paper, we focus
on the normalized Jacobian matrices and use [JX( j) ] for
simplicity.

In addition, we note that the size of Jacobian matrices de-
rived from high-resolution outputs are much larger than those
derived from low-resolution outputs, which significantly in-
creases computational time and memory use for analyses.
However, we find that the Jacobian matrices derived from
low-resolution outputs have the same ability as those derived
from high-resolution outputs in reproducing global-mean val-
ues from an atmosphere-only simulation prescribed with ob-
served SSTs and sea ice concentration. Therefore, we use
model outputs of relatively low resolution. In the rest of the
paper, we focus on the Jacobian matrices derived from the
outputs of;28 horizontal resolution.

To derive the Jacobian matrix JX(i, j), we first conduct a
control simulation with AM4 forced by the observed climato-
logical (1981–2014) monthly means of SSTs and sea ice con-
centrations from PCMDI used in phase 6 of the Coupled
Model Intercomparison Project (CMIP6; Eyring et al. 2016).
Note that the greenhouse gases and aerosol emissions are
from the 2010 condition and are set as constant over the
control simulation. The control simulation is integrated for
31 years with the last 30-yr output used to compute the model’s
mean state. In each perturbation experiment, a patch of constant
SST perturbation is added to the climatological monthly means
of SSTs used in the control run. Perturbations of SST over each
patch are computed following the equation originally proposed
by Barsugli and Sardeshmukh (2002) as

DSST(lat; lon) 5 A cos2
p

2

lat 2 latp
latw

( )
cos2

p

2

lon 2 lonp
lonw

( )
:

(3)

The same method is also used in Zhou et al. (2017) and Dong
et al. (2019). In Eq. (3), A is a parameter that controls the
maximum amplitude of SST anomaly. Positive values of A

stand for SST warming, while negative ones stand for cooling.
Subscript p denotes the center point of the patch, and sub-
script w represents the half-width of the patch. While lonw is
set as 408 for all patches, latw increases with the absolute val-
ues of latitude (see details in Table 1). Figure S1 in the online
supplemental material shows locations of the patches used in
this study. Details of these parameters in Eq. (3) are provided
in Table 1. We note that the center points of patches used in
this study are slightly different from those in Dong et al.
(2019) due to different model setups. Given a specific value of
the parameter A, we conducted 153 SST perturbation experi-
ments with each integrated for 11 years. The results over the
last 10 years are used for analyses. As in Dong et al. (2019),
insignificant anomalies between the control run and the SST
perturbation runs are set as zero. The significance of anoma-
lies is assessed by the two-sided Student’s t test at the 95%
confidence level. Insignificant anomalies are regarded as
“noise” due to limited model integration time. To explore the
sensitivity of the GF to the parameter A, we conducted three
suites of SST perturbation experiments with A 5 11.5, 14.0,
and 24.0 K. The integration time is the same for 11 years
with the last 10 years used for analyses. Moreover, we run an-
other suite of SST perturbation experiments with A 5 11.5 K
and each experiment integrated for 31 years. These additional
experiments aim at investigating the sensitivity of the GF to
the integration time and the confidence level. Table 2 lists
these experiments.

To evaluate the performance of the GF approach, we com-
pare the GF reconstruction with an atmosphere-only simula-
tion forced by observed SSTs and sea ice concentrations from
1870 to 2014 using AM4. The atmosphere-only simulation is
forced by preindustrial radiative gases and aerosol emissions
throughout the 1870–2014 period and is referred to as the
Amip-piForcing simulation. The Amip-piForcing simulation
is equivalent to the historical simulation used in Dong et al.
(2019). Also, we utilize a coupled simulation in coupled model
(CM4; Held et al. 2019) with an abrupt 4 times increase of at-
mospheric CO2 concentration. The CM4 simulation was inte-
grated for 150 years and is referred to as the CM4 4 3 CO2

simulation, which was branched off from CM4 preindustrial
control simulation (referred to as CM4 pi-Control) that had
been integrated for several hundreds of years. Both CM4 pi-
Control and CM4 4 3 CO2 simulations are identical to the
GFDL’s submission to CMIP6. An overview of the effective
climate sensitivity in CM4 can be found in Winton et al.
(2020) and Zhao (2022). Following Dong et al. (2019), we
conduct an AM4 simulation with a time evolution of monthly
SST and sea ice anomalies from CM4 4 3 CO2 relative to

TABLE 1. Parameters related to geographic locations of the patches used in the SST perturbation experiments: latp is the center
latitude and lonp is the center longitude of the patches. The value latp is paired up with lonp in the same column. Positive (negative)
values of latp means northern (southern) hemisphere. Values of lonp mean degrees east; for example, 2008 means 1608W. The map of
the patches can be found in Fig. S1.

Patches shown in Fig. S1

latp: 08, 6158, 6308, 6508, 6758 latp: 67.58, 622.58, 637.58, 662.58
lonp: 08, 408, 808, 1208, 1608, 2008, 2408, 2808, 3208 lonp: 208, 608, 1008, 1408, 1808, 2208, 2608, 3008, 3408
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CM4 pi-Control added to the monthly varying climatology
used in the control run (referred to as AM4 4 3 CO2). Com-
pared to the CM4 4 3 CO2 simulation, there is no coupling
and no changes in the concentration of CO2 in the AM4 4 3

CO2 simulation. Therefore, it is a clean way of applying the
GF to the AM4 4 3 CO2 simulation in the absence of actual
changes in CO2. In addition, a Plus2K experiment with uni-
form 2-K warming added to the SST condition in the control
run is conducted (Table 2).

3. Results

a. Global annual-mean responses

Figure 1 shows maps of global annual-mean responses per
unit SST warming per square kilometer retrieved from the
SST perturbation experiments with A 5 14.0 K. The Indo-
Pacific warm pool is characterized by negative values of net
TOA radiation (Fig. 1a), positive values of surface air temper-
ature (Fig. 1b), and negative radiative feedback (Fig. 1c).
These results are qualitatively consistent with those found in
CAM4 and CAM5 (Zhou et al. 2017; Dong et al. 2019). The
tropical Atlantic and the tropical northeastern Pacific also
stand out as regions important for producing strong negative
radiative feedback in AM4 (Fig. 1c), which is generally miss-
ing in CAM4 (Dong et al. 2019) but is discernable in CAM5
(Zhou et al. 2017), indicating significant model dependence of
the GF. An ongoing Green’s Function Model Intercompari-
son Project (GFMIP; J. Bloch-Johnson et al. 2023, unpub-
lished manuscript) will focus more on the intermodel spread.
Overall, the global-mean response of net cloud radiative ef-
fect (CRE; Fig. 1f) is consistent with that of low-cloud amount

(Fig. 1i), the global-mean response of the longwave (LW)
component of CRE (Fig. 1e) is consistent with that of high-
cloud amount (Fig. 1h), and the global-mean response of the
shortwave (SW) component of CRE (Fig. 1d) is consistent
with that of total cloud amount (Fig. 1g). However, the CRE
responses to local SST warming can be dominated by either
the LW or SW component. For example, SST warming over
the tropical Atlantic and the northeastern Pacific induces neg-
ative global-mean CRE responses (Fig. 1f), which is domi-
nated by the negative responses of the LW component of
CRE (Fig. 1e) that owes to a decrease in global-mean high-
cloud amount (Fig. 1h).

With SST perturbations, the GF approach can be used to
reconstruct climate responses. Figure 2 compares the GF re-
constructed global annual-mean responses with actual model-
simulated ones. The response for the Amip-piForcing run is
defined by removing monthly climatology averaged from 1870
to 1899, while that for the AM4 4 3 CO2 run is defined by re-
moving monthly climatology from the 30-yr simulation of the
control run. For the Amip-piForcing run, the GF approach
generally reproduces interannual variations of net TOA ra-
diation, surface air temperature, and radiative feedback
(Figs. 2a–c), which is consistent with the results in CAM4
(Dong et al. 2019). In terms of the AM4 4 3 CO2 run, the
GF approach underestimates the magnitude of negative net
TOA radiation and positive surface air temperature re-
sponses (Figs. 2d,e), although the GF reconstructed radia-
tive feedback appears to match the model-simulated ones
well (Fig. 2f). Note that the impact of changes in sea ice is
not considered here. Given that a reduction in sea ice in-
creases the global-mean net TOA radiative fluxes and surface

TABLE 2. A list of the simulations conducted in this study. The asterisk means that group iv is the same as group i except that the
integration time for group iv is longer.

Experiment name SST forcing Integration time Definition of climatology

Control Monthly varying climatology of
SST averaged over 1981–2014

31 years Monthly climatology averaged over
the last 30 years of the simulation

Patch simulations (i) A 5 11.5 K 11 years for groups i–iii;
31 years for group iv

Monthly climatology averaged over
the last 10 years of the
simulation for groups i–iii, over
the last 30 years of the
simulation for group iv

(ii) A 5 14.0 K
(iii) A 5 24.0 K
(iv) A 5 11.5 K*

Amip-piForcing simulation Monthly varying observed
historical SSTs

145 years from 1870 to
2014

Monthly climatology averaged from
1870 to 1899

CM4 4 3 CO2 Coupled simulation with abrupt
quadrupling of CO2; SST is
model generated

150 years }

AM4 4 3 CO2 Atmosphere-only simulation with
monthly varying climatology
of SST used in the control run
plus monthly varying SST
anomalies from CM4 4 3 CO2

relative to its piControl
experiment

150 years }

Plus2K Atmosphere-only simulation with
monthly varying climatology
of SST used in the control run
plus uniform 2-K warming

31 years Monthly climatology averaged over
the last 30-yr simulations
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air temperature (Zhao 2022), taking into account the impact
of sea ice can to some extent reduce the biases between the
GF reconstruction and the model simulations, as shown in
Dong et al. (2019). Further discussion on the impact of sea ice
can be found at the end of this section.

We further decompose the net TOA radiation into clear-
sky, CRE, net LW, and net SW components. For the Amip-
piForcing run, the GF approach largely captures interannual
variations of the clear-sky (Fig. 3a) and net LW (Fig. 3c) com-
ponents. However, the reconstructed CRE (Fig. 3b) and net
SW (Fig. 3d) components exhibit some biases in recent deca-
des. For the AM4 4 3 CO2 run, it turns out that the biases in
Fig. 2d are mostly from the CRE rather than the clear-sky
component (Figs. 3e,f). In comparison, the GF approach
yields stronger LW cooling and SW heating (Figs. 3g,h).

Several factors may contribute to the differences between
the GF reconstructed values and the model-simulated ones.
Primarily, the GF reconstructed CRE exhibits more biases
than the clear-sky component (Fig. 3), which is probably due

to the nonlinear behavior of convection to SST perturbations.
For the total net TOA radiation and surface air temperature,
Dong et al. (2019) proposed a way in which the impact of
changes in sea ice has been added to the reconstructed re-
sponses. However, biases still exist [see Fig. 7 in Dong et al.
(2019)]. They argued that nonlinearity in global-mean net
TOA radiation associated with either global-mean or local
temperature change cannot explain why the GF reconstructed
values are biased frommodel-simulated ones. The GF derived
from experiments with SST patches of limited domain sizes
cannot capture relatively uniform warming or cooling SST
patterns, which potentially puts a limitation for the use of the
GF approach. This has been mentioned in Dong et al. (2019).
One possibility is that the relationship between convection
and SST is intrinsically nonlinear. The climate response tends
to be linear when a small number of individual SST patches are
perturbed at the same time. However, an underlying prerequi-
site is that these limited number of patches should be located far
away enough from each other, which applies to the two-patch

FIG. 1. Maps of global annual-mean (a) net TOA radiation, (b) surface air temperature, (c) radiative feedback, (d) shortwave component
of cloud radiative effect (CRE-SW), (e) longwave component of cloud radiative effect (CRE-LW), (f) total CRE, (g) total cloud amount,
(h) high-cloud amount, and (i) low-cloud amount in response to 1-K local SST warming at each ocean grid point (values are normalized by
actual physical area of each grid box). Note that values between 21.5 3 1029 and 21.5 3 1029 in (b) are masked to avoid potential infinity
issues in (c). The unit for (a), (d), (e), and (f) is31028 W m22 K21 of local SST warming per km2, for (b) the unit is31028 K21 of local SST
warming per km2, for (c) the unit is W m22 K21 of global-mean surface air temperature warming (actual physical area has been canceled
out), and for (g)–(i) the unit is 3 1028% K21 of local SST warming per km2. For example, for a value of 21.6 3 1028 over the western
Pacific in (a), it indicates a change of global annual-mean net radiation at TOA of 21.6 3 1028 W m22 in response to 1-K SST warming
over 1-km2 region.
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run shown in Dong et al. (2019). However, this may break up
when more patches are considered at the same time and/or the
parches stay closer to each other, where a uniform warming sce-
nario can be regarded as an extreme case for this.

While the GF reconstructed values are biased from the model-
simulated ones for AM4 4 3 CO2 run, we note that the overall
trend in Figs. 2 and 3 is largely captured by the GF. Also, com-
pared with the SST patterns in the Amip-piForcing run, the
SST patterns in the AM4 4 3 CO2 run are more spatially uni-
form in terms of the warming trend. Therefore, we decompose
the total SST patterns in the AM4 43 CO2 run into two parts:

DSST43CO2
5 D[SST43CO2

] 1 DSST*, (4)

where DSST43CO2
represents the original SST warming patterns

used in Figs. 2 and 3 for the AM4 4 3 CO2 run; D[SST43CO2
] is

the global-mean component and is a function of time only; and
DSST* is the departure from the global-mean value, which rep-
resents “the remaining SST patterns.” With such decomposition,
we can apply the GF approach to DSST* to account for the im-
pact of “the remaining SST patterns” and scale responses from

uniform SST warming experiment (e.g., the Plus2K run) with ac-
tual global-mean SST warming in the AM4 4 3 CO2 run
([D[SST43CO2

]) to account for the impact of global-mean trend.
For the AM4 4 3 CO2 run, the final reconstructed values for a
certain variableX involve two parts:

D[X43CO2
] 5 D[X]p2K

2K
3 D[SST43CO2

] 1 JX 3 DSST*: (5)

For the first term on the right-hand side of Eq. (5), the model-
simulated response from the Plus2K run (D[X]p2K) is scaled
by the global-mean SST warming in the AM4 4 3 CO2 run.
The second term on the right-hand side is using the Jacobian
matrix JX to reconstruct the impact of “the remaining SST
patterns.” Through this, biases in net TOA radiation and sur-
face air temperature are reduced compared to the original re-
construction (Figs. 4a,b). For individual components of net
TOA radiation, the modified GF based on Eq. (5) shows im-
provement (Figs. 4d–g). These results indicate that the default
GF approach is unable to reproduce the magnitude of the re-
sponses for individual components of net TOA radiation

FIG. 2. (a),(d) The global annual-mean response for net TOA radiation (W m22), (b),(e) surface air temperature (K),
and (c),(f) radiative feedback (W m22 K21) retrieved from the (left) AM4 Amip-piForcing run and (right)
AM4 4 3 CO2 run. The black solid lines show actual model simulations, while the red solid lines show the GF
reconstruction. The response for the Amip-piForcing run is defined by removing monthly climatology averaged from
1870 to 1899, while that for the AM4 43 CO2 run is defined by removing monthly climatology from the control run. For
each experiment, radiative feedback is computed with net TOA radiation over surface air temperature.
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when there is an overall warming trend. The modified GF
based on Eq. (5) does a better job, although it still has some
issues like reproducing the magnitude of CRE (Fig. 4e). Nev-
ertheless, the significant improvement by Eq. (5) indicates
that the large biases shown in Fig. 3 are mostly caused by the
uniform warming part. Given the complex behavior of con-
vection to SST perturbation, it is not surprising that the GF
has issues in reproducing the response associated with the uni-
form warming part. Thus, separately accounting for the im-
pact from the uniform warming part should be considered a
useful complement to the original GF approach.

In terms of the original GF approach, there could be multi-
ple reasons why the GF reconstructed global-mean values are
biased from model-simulated ones: (i) surface temperature
changes over land are regarded as response instead of forcing
in the GF approach, which is also mentioned in section 2a.
The derived Jacobian matrices are multiplied with surface
temperature changes over ocean. Given that the response of
surface temperature over land to SST perturbations involves
a lot of processes, the linear assumption of the GF may not be
good enough to capture the response over land in general.
(ii) There is a coupling between changes in surface temperature

FIG. 3. The global annual-mean response for (a),(e) clear-sky net TOA radiation, (b),(f) cloud radiative effect,
(c),(g) net LW radiation at TOA, and (d),(h) net SW radiation at TOA retrieved from the (left) AM4 Amip-piForcing
run and (right) AM4 4 3 CO2 run. The black solid lines show actual model simulations while the red solid lines show
the GF reconstruction.
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over land and changes in other variables such as cloud, which
is not considered by the GF. (iii) The impact of sea ice is not
addressed in this paper. Although Dong et al. (2019) proposed
a way in which the impact of sea ice is considered, a tunable
parameter is used to control the proportion of the impact
of sea ice. Essentially, the tunable parameter itself brings in
extra uncertainty. In addition, it remains unclear whether
changes in sea ice and changes in SST should be considered
simultaneously by assuming that the changes in sea ice are
proportional to the changes in SST, as has been done in Dong
et al. (2019), or if the changes of the two variables should be
considered individually. In the latter case, idealized experi-
ments in which only sea ice is perturbed but SST remains the
same would be conducted to derive the Jacobian matrices
purely due to changes in sea ice. There is no simple answer in

terms of which one is more appropriate. To test the difference
is beyond the scope of this paper. Future studies can explore
this.

b. Regional responses

Future climate change requires information of regional re-
sponses for key variables (e.g., surface air temperature, pre-
cipitation, etc.) that are useful for local policy making. In this
section, we explore the extent to which the GF reproduces re-
gional responses given different SST patterns. We consider
three modes of natural oscillation with significant changes
in SST patterns: (i) ENSO, (ii) the Atlantic multidecadal os-
cillation (AMO), and (iii) the Indian Ocean dipole (IOD).
Variations of ENSO are measured by the Niño-3.4 index
(Trenberth 1997), which is the SST anomaly averaged over

FIG. 4. The global-annual-mean response for (a) net TOA radiation, (b) surface air temperature, (c) radiative feed-
back, (d) clear-sky net TOA radiation, (e) cloud radiative effect, (f) net LW radiation at TOA, and (g) net SW radia-
tion at TOA for the AM4 43 CO2 run. The black solid lines show actual model simulations. The red solid lines show
the default GF reconstruction as in Figs. 2 and 3. The blue solid lines show a combination of the GF reconstruction
and scaled responses retrieved from AM4 experiment with uniform12-K SST warming based on Eq. (5).
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the region 58S–58N and 1908–2408E. A 3-month running aver-
age is applied to the domain-averaged SST. For the AMO,
we use the detrended SST averaged over the North Atlantic
(08–708N) and a 121-month running average is applied to get
the AMO index (Enfield et al. 2001). The IOD is measured
by the difference in SST anomalies between the western equa-
torial Indian Ocean (508–708E and 108S–108N) and the south-
eastern equatorial Indian Ocean (908–1108E and 108S–08),
which is usually referred to as the dipole mode index (DMI;
Saji et al. 1999). For actual model outputs from the Amip-
piForcing run, variables are regressed against these indices at
each grid point. For the GF, we first regress historically ob-
served SST against these indices to get SST patterns. Next, we
use the Jacobian matrices and the regressed SST patterns to
reconstruct regional responses.

From central to eastern Pacific, positive Niño-3.4 index
(i.e., the El Niño condition) is associated with a narrow band
of anomalous radiative heating in the deep tropics but anoma-
lous radiative cooling in the subtropics (Fig. 5a). The GF re-
construction generally reproduces the spatial structure of

radiative perturbations over the Pacific, although biases are
found over regions like the Indian Ocean (Fig. 5b). For radia-
tive perturbations associated with the AMO index, the
model-simulated signals are generally noisy and negligible
over the North Atlantic (Fig. 5c), while the GF reconstruction
shows large changes (Fig. 5d). The IOD exhibits a similar
pattern of radiative perturbations compared to the Niño-3.4
index (Fig. 5e). However, the reconstructed responses are
overestimated over Southeast Asia (Fig. 5f).

Compared to net TOA radiation, the spatial structure of
surface air temperature from the actual model outputs is bet-
ter reconstructed by the GF for all three cases, although the
GF reconstructed responses over land tend to be more biased
compared to those over ocean (Fig. 6). Since surface air tem-
perature is more closely connected with SST compared to net
TOA radiation, it comes as no surprise that its spatial struc-
ture is better reconstructed by the GF. The same is true for
other variables that are tightly connected with SST such as up-
ward longwave radiation at the surface (not shown). How-
ever, we note that one major issue about the reconstruction of

FIG. 5. Maps of net TOA radiation (W m22) retrieved from the Amip-piForcing run regressed against (a) the
Niño-3.4 index, (c) the AMO index, and (e) the IOD index. The GF reconstruction is shown for (b) the Niño-3.4 in-
dex, (d) the AMO index, and (f) the IOD index. Grid points that are insignificant at 95% level are in gray color. The
black rectangles in each subplot show the geographic location for each index. See section 3b for more details.
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surface air temperature lies in the amplitude. For example,
the GF reconstruction underestimates the warming over the
eastern Pacific in the ENSO case (Fig. 6b). Similar issues are
found in the IOD case where cooling over the eastern Indian
Ocean and warming over the eastern Pacific tend to be
weaker in the reconstruction (Fig. 6f). One potential reason is
that the size of patches used in the perturbation experiments
are in general larger than the typical narrow band of SST
anomalies associated with ENSO. Thus, the derived GF may
not fully resolve regional details. In any case, this indicates
that not only spatial structure but also the amplitude of the
GF reconstructed regional responses can vary from case to
case, which could be ignored if only global-mean responses
are analyzed. Therefore, there is still plenty of room for im-
provement of the GF in reproducing regional responses.

Additionally, we explore the extent to which the GF
reproduces regional responses in precipitation. Both the model-
simulated responses and the reconstruction show that precipi-
tation is reduced over the western Pacific but enhanced from
central to eastern Pacific for regression against the Niño-3.4
index. However, the GF exhibits large biases over central
America (Figs. 7a,b). For the AMO, positive anomalies over
central America and the tropical Atlantic (Fig. 7c) are reproduced

by the GF (Fig. 7d). However, away from the Atlantic, the recon-
struction of precipitation exhibits more biases. In terms of the
IOD, the dipole pattern in which positive anomalies over the
western Indian Ocean and negative ones over the eastern
Indian Ocean (Fig. 7e) is captured by the GF (Fig. 7f).

While the GF can reproduce regional responses from the
Amip-piForcing run, we note that the GF cannot fully repro-
duce regional responses from the AM4 4 3 CO2 run. In
section 3a, we show that interannual variations of the global-
mean surface air temperature are reproduced by the GF,
whereas the global-mean net TOA radiation is overestimated
in magnitude by the GF. In fact, the reconstructed regional re-
sponses of net TOA radiation and surface air temperature are
both biased from the model-simulated ones (not shown). Cur-
rently, it remains unclear what causes these regional biases.
As mentioned in Dong et al. (2019), the GF approach has lim-
ited ability in quantifying feedback when warming signals
tend to be spatially uniform (e.g., uniform 2-K SST warming;
SST warming induced by quadrupling/doubling of CO2). Simi-
larly, we find that the GF derived in this study is unable to
exactly reproduce the magnitude of the responses from the
Plus2K experiment (not shown). One possible reason is related
to the linear assumption of the GF approach. The response in a

FIG. 6. As in Fig. 5, but for surface air temperature (K).
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simulation imposed with two individual SST patches simulta-
neously can be very similar to a linear summation of the re-
sponses from these two SST patch experiments [see the linearity
test in section 4 of Dong et al. (2019)]. However, this could be-
come invalid when there are more than two individual SST
patches imposed at the same time (e.g., greater than 10) and/or
when the patches stay closer to each other. The latter scenario is
to some extent similar to uniform 2-K SST warming and warm-
ing induced by an increase in CO2. Another possible reason is
that atmospheric variability does exist in each of the patch simu-
lations. In terms of the simulations used to derive the GF, each
simulation only has a single SST patch. Given relatively spatially
uniform SST warming patterns, the linearity may break up, and
the derived GF could fail in reproducing responses from simula-
tions such as the AM4 4 3 CO2 run. Future studies need to ad-
dress the reconstruction of both global and regional responses.

c. Sensitivity of the GF to the amplitude and sign of
SST perturbation

In sections 3a and 3b, we focus on the Jacobian matrices de-
rived from idealized experiments with A 5 14.0 K. However,
it remains unclear whether and how the amplitude and sign of
SST perturbation would impact the performance of the GF in

reproducing global and regional responses. Dong et al. (2019)
set the parameter A as 11.5 K for nonpolar patches and
13.0 K for polar patches in their SST perturbation experi-
ments. Zhou et al. (2017) examined the linearity of the patch
experiments with the parameter A set as 64.0 and 62.0 K.
They found a mostly linear relationship between the global-
mean cloud feedback and the amplitude of SST perturbations.
To explore the extent to which the parameter A affects the
performance of the GF approach, we conduct two additional
suites of experiments in which the parameter A is set as 11.5
and 24.0 K. All the other settings are the same for these ex-
periments (more details can be found in section 2b). We use
the parameter A to distinguish the Jacobian matrices. For ex-
ample, [JX( j)] derived from the experiments with the param-
eter A 5 14.0 K is referred to as the 14.0 K [JX( j)]. In
addition, we have another set of Jacobian matrices derived
from a combination of the 14.0- and 24.0-K experiments to
offset potential nonlinearities associated with the sign of SST
perturbation.

We first compare maps of global annual-mean net TOA radi-
ation, surface air temperature, and radiative feedback (Fig. 8).
All four Jacobian matrices of net TOA radiation show a nega-
tive global-mean TOA radiation response to SST warming over

FIG. 7. As in Fig. 5, but for precipitation (mm day21).
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the western Pacific. However, for the 24.0 K [JR(j) ] (Fig. 8g),
the strength of global-mean radiative cooling over the western
Pacific is weaker and its spatial coverage is confined within a
smaller region compared to the 11.5 K [JR(j) ] (Fig. 8a) and
14.0 K [JR(j) ] (Fig. 8d) in which radiative cooling dominates
most of the Indo-Pacific warm pool. This indicates that the
global-mean net TOA radiation does not respond linearly to
SST perturbations in AM4. The absolute amount of anomalous
global-mean radiative cooling induced by an increase in SST

over the western Pacific is greater than the absolute amount of
anomalous global-mean radiative heating induced by a decrease
in SST over the same region. To alleviate impacts of the sign of
SST perturbation, we derive another set of Jacobian matrices us-
ing both the 14.0- and 24.0-K experiments. Compared to the
11.5 K [JR(j) ] (Fig. 8a) and 14.0 K [JR(j) ] (Fig. 8d), the
[JR(j) ] derived the 14.0- and 24.0-K experiments (Fig. 8j)
tends to be smaller in the absolute magnitude of the responses.
However, such changes are not linear. In terms of surface air

FIG. 8. Maps of global annual-mean responses per unit SST warming normalized by actual physical area of each grid box: (a)–(c) derived
fromA5 11.5 K, (d)–(f) fromA514.0 K, (g)–(i) fromA524.0 K, and (j)–(l) from a combination ofA5 14.0 and24.0 K experiments.
Note that (a), (d), (g), and (j) are net TOA radiation with units of 31028 W m22 per unit local SST warming per km2; (b), (e), (h), and
(k) are surface air temperature with units of 31028 K per unit local SST warming per km2; (c), (f), (i), and (l) are radiative feedback with
units of Wm22 per 1 K global-mean surface air temperature warming.
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temperature, the 24.0 K [JT( j)] (Fig. 8h) exhibits weaker re-
sponse over the western Pacific compared to the11.5 K [JT( j)]
(Fig. 8b) and the14.0 K [JT( j)] (Fig. 8e). The weaker response
over the western Pacific in the24.0 K [JT( j)] is enhanced when
the [JT( j)] is derived from the 14.0- and 24.0-K experiments
(Fig. 8k). The large differences in [JR( j) ] and [JT( j) ] lead to
varied global-mean radiative feedback over the western Pacific
(Figs. 8c,f,i,l). One of the hypotheses is about interactions be-
tween deep convection and SST. It has been known that tropical
deep convection only occurs when moist static energy hits a
threshold value (Zhang and Fueglistaler 2019, 2020). Thus, it is
possible that convection-induced perturbations (e.g., radiation,
clouds, water vapor) exhibit nonlinearity to SST. In addition, the
base state in this study (i.e., the control run) is based on the simu-
lation forced by SST climatology averaged from 1981 to 2014. It
is possible that the Jacobian matrices exhibit some sensitivity to
the base state. The state dependence of the Jacobian matrices re-
quires lots of additional computational resources, which is be-
yond the scope of this study but can be investigated in future
work.

Back to the derived Jacobian matrices in this study, we use
them to reconstruct global-mean responses for the Amip-
piForcing run and AM4 4 3 CO2 run. In the Amip-piForcing
run, the 11.5-, 14.0-, and combined 14.0- and 24.0-K Jacobian

matrices show similar ability in reproducing interannual varia-
tions of net TOA radiation, surface air temperature, and thus
radiative feedback. However, the 24.0-K Jacobian matrices
show limited ability in reproducing model-simulated re-
sponses (Figs. 9a–c). When it comes to AM4 43 CO2 run, the
combined 14.0- and 24.0-K Jacobian matrices underestimate
the magnitude of net TOA radiation and surface air tempera-
ture (Figs. 9d–f). The24.0-K Jacobian matrices can hardly re-
produce the model-simulated net TOA radiation, surface air
temperature, and radiative feedback (Figs. 9d–f). The 11.5-K
Jacobian matrices do an even worse job in reproducing the
net TOA radiation compared to the 24.0-K ones (Fig. 9d).
When decomposing the net TOA radiation into different
components (Fig. 10), similar results are found as in Fig. 3.
Overall, the GF reconstructed values are biased from model-
simulated ones for AM4 4 3 CO2 run. While the amplitude
and sign of SST perturbations cannot explain the biases, other
factors should be examined in the future.

In addition, we examine the sensitivity of reconstructed re-
gional responses to SST perturbations. Here, we focus on the
Niño-3.4 index, which has a well-defined SST pattern associ-
ated with robust regional responses. For net TOA radiation
and precipitation, the 11.5- and 14.0-K Jacobian matrices can
reproduce their spatial patterns compared to the Amip-piForcing

FIG. 9. As in Fig. 2, but comparing the GF reconstruction from A 5 11.5 K (orange lines), A 5 14.0 K (red lines),
A524.0 K (blue lines), and a combination of A514.0 and24.0 K experiments (green lines).
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run. However, we note that the reconstructed net TOA radia-
tion and precipitation from the 14.0-K Jacobian matrices are
stronger and more spatially coherent than those from the
11.5-K Jacobian matrices (Fig. 11). The reconstructed re-
gional responses of surface air temperature show smaller dif-
ference between these experiments (Fig. 11), which indicates
that the amplitude of SST perturbations has limited impact on
the reconstruction of regional responses for variables that are
tightly connected with SST. On the other hand, the 24.0-K
Jacobian matrices cannot reproduce the structure of net TOA
radiation and precipitation associated with the Niño-3.4 index.
Recall that the 24.0-K Jacobian matrices also have issues in

reproducing the global-mean responses. We propose that us-
ing cooling SST patches is not suitable for reconstructing cli-
mate responses in AM4. A GF approach can be used properly
on the premise of its success in reconstructing both global-
mean and regional responses, no matter what kind of ideal-
ized experiments are performed to derive it.

d. Sensitivity of the GF to the length of simulation and
the confidence level

In addition to the impact of the parameter A on the perfor-
mance of the GF approach, it is possible that the integration

FIG. 10. As in Fig. 3, but comparing the GF reconstruction from A 5 11.5 K (orange lines), A 5 14.0 K (red lines),
A524.0 K (blue lines), and a combination of A514.0 and24.0 K experiments (green lines).

J OURNAL OF CL IMATE VOLUME 361118

Brought to you by NOAA Central Library | Unauthenticated | Downloaded 07/19/23 06:09 PM UTC



time also makes a difference. As in Dong et al. (2019), the GF
approach involves tests of statistical significance. Given the
limited integration time, the differences between the control
and SST perturbation experiments can be regarded as “noise”

by the significance test with a certain confidence level. Insignifi-
cant differences are set as zero. Essentially, this is equivalent to
reducing the number of grid points used for the linear sum. So
far, only the Jacobian matrices derived from the 10-yr SST

FIG. 11. Maps of (left) net TOA radiation (W m22), (center) near-surface air temperature (K), and (right) precipitation (mm day21).
The results are retrieved (a),(f),(k) from the Amip-piForcing run regressed against the Niño-3.4 index and the reconstruction using the
Jacobian matrices derived from experiments with (b),(g),(l) A 5 11.5 K, (c),(h),(m) A 5 14.0 K, and (d),(i),(n) A 5 24.0 K, and
(e),(j),(o) a combination of A5 14.0- and A524.0-K experiments.
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perturbation experiments have been considered. The relatively
short integration time could be the reason why the 11.5-K
Jacobian matrices with a 95% confidence level poorly repro-
duce the responses (Fig. 9). To examine the sensitivity of the
GF to the integration time and the confidence level, we
conduct another suite of SST perturbation experiments with
4 3 CO2 5 11.5 K and each simulation integrated for 31 years
(the last 30 years are used for analyses).

As previously shown in Fig. 9, the 10-yr 11.5-K Jacobian
matrices exhibit large biases with a 95% confidence level. With-
out the significance test, the 10-yr 11.5-K Jacobian matrices
generally do a better job reproducing the model-simulated
responses (Figs. 12 and 13). Nevertheless, we note that the re-
sults here only indicate that the confidence level affects the GF
reconstruction when the SST perturbation experiments are inte-
grated for a relatively short period of time. However, this does
not negate the importance of the significance tests in the GF ap-
proach. We further look at the 30-yr 11.5-K Jacobian matrices.
For the surface air temperature, the 10- and 30-yr Jacobian ma-
trices show similar ability if given the same p value (Figs. 12b,e).
For the net TOA radiation, the 30-yr 11.5-K Jacobian matrices
with p value set as 0.05 show the best reconstruction, which is
more noticeable for the AM4 4 3 CO2 run (Fig. 12d). The

overall better reconstruction by the 30-yr 11.5-K Jacobian ma-
trices with p value set as 0.05 is also true for the individual com-
ponents of net TOA radiation (Fig. 13). However, for the AM4
4 3 CO2 run, the reconstruction of the surface air temperature
still favors no significance test, even for the 30-yr Jacobian
matrices (Fig. 12e). As mentioned earlier, this could be due to
the fact that the impact of sea ice is not considered here.

Given a specific confidence level, the sample size is a key fac-
tor for the significance test. Since a longer simulation means a
larger sample size, we argue that it would be better if the SST
perturbation experiments were integrated for long periods. Gen-
erally, longer simulations help reduce potential interference
from the models’ internal variabilities. While it is possible that
some signals would be discarded as “noise” by the significance
test due to the limited sample size, longer simulations lower the
risk of discarding such “signals” inadvertently. Although it is
hard to find a perfect combination of the integration time and
the confidence level (which requires tons of computational re-
sources and tests), the results in this section indicate that the GF
approach is sensitive to the integration time and the confidence
level, which needs more attention in future studies.

However, if longer simulations of the SST perturbations
experiments are not available, one may consider following

FIG. 12. As in Fig. 2, but comparing the GF reconstruction using the 10-yr Jacobian matrices with A 5 11.5 K
(orange lines), with that using the 30-yr Jacobian matrices with the same amplitude (blue lines). The solid lines are
without the significance test (i.e., p value 5 1.00), whereas the dash lines are with a 95% confidence level (i.e.,
p value5 0.05).
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Eq. (5) to reproduce the responses from experiments like the
AM4 4 3 CO2 run. By decomposing the total SST changes
into global-mean values plus remaining anomalies, the modi-
fied GF approach significantly improves the reconstructed
responses (Figs. 14 and 15).

4. Summary and discussion

In this study, we investigate the pattern effect in global climate
models recently developed at NOAA’s GFDL using a GF ap-
proach that utilizes several suites of idealized atmosphere-only

experiments forced by patches of SST perturbations added to
the present-day base state. The 10-yr 14.0-K Jacobian matrices
can largely reproduce interannual variations of the global-mean
radiative feedback from the AM4 Amip-piForcing run. At re-
gional scale, the GF generally captures spatial patterns of varia-
bles associated with ENSO and IOD. In comparison, the GF
reconstruction associated with AMO shows more local biases.
Overall, the reconstructed responses over land exhibit more
biases compared to those over ocean. It is likely that the model-
simulated responses over land are affected not only by remote
SST perturbations but also by local surface temperature

FIG. 13. As in Fig. 3, but comparing the GF reconstruction using the 10-yr Jacobian matrices with A 5 11.5 K
(orange lines), with that using the 30-yr Jacobian matrices with the same amplitude (blue lines). The solid lines
are without the significance test (i.e., p value 5 1.00), whereas the dash lines are with a 95% confidence level (i.e.,
p value5 0.05).
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changes. Since the GF approach defined by Eq. (1) treats sur-
face temperature changes over land as “response” to SST per-
turbations instead of “forcing,” the greater biases over land
are expected to some extent. In terms of the AM4 4 3 CO2

run, the 10-yr14.0-K Jacobian matrices have issues reproduc-
ing the magnitude of the global-mean responses. Since the
AM4 4 3 CO2 run is forced by more spatially uniform SST
warming, one possible way of improving the GF reconstruc-
tion is by including the contribution from the uniform warm-
ing experiments such as the Plus2K run (section 3a).

With the limited integration time, we show that the derived
Jacobian matrices are sensitive to the amplitude and sign of SST
perturbations. Overall, the 10-yr 14.0-K Jacobian matrices do
the best in reproducing the model-simulated responses, which is
more noticeable for the AM4 4 3 CO2 run. There are several
potential reasons: (i) a larger absolute value of the parameter A
is preferred when the integration time is not long enough but
the significance test is performed. With larger SST perturbation,
more grid points can pass the significance test, which reduces the
loss of “information.” (ii) The 14.0-K Jacobian matrices are

more suitable than the 24.0-K ones for warming scenarios such
as the AM4 4 3 CO2 run because the signs of temperature
anomalies are more consistent between the 14.0-K SST pertur-
bations experiments and the AM4 43 CO2 run.

In addition to the sign and amplitude of SST perturbations,
the GF is also found to be sensitive to the integration time
and significance test. A typical significance test aims at remov-
ing responses that are statistically insignificant for a given
sample size. A small sample size can turn “response” into
“noise.” In comparison, longer simulations with a larger sam-
ple size are preferred to retain the “responses.” However, the
required amount of computational resources also goes up
with longer simulations. This dilemma can be handled by find-
ing a balance between the integration time and the confidence
level. Nevertheless, this could vary from case to case.

We argue that the goal of the GF approach is not to per-
fectly reproduce the model-simulated responses but to quan-
tify the linear part of the responses to SST perturbations.
While the former requires some tuning processes to get a
“good reconstruction,” the latter can be regarded as an objective

FIG. 14. The global annual-mean response for (a),(d) net TOA radiation (W m22), (b),(e) surface air temperature (K),
and (c),(f) radiative feedback (W m22 K21) retrieved from the AM4 43 CO2 run. The black solid lines show actual
model simulations. The orange lines are using the 10-yr Jacobian matrices with A 5 11.5 K, while the blue lines are
using the 30-yr Jacobian matrices with the same amplitude. The solid lines are without the significance test (i.e.,
p value5 1.00), whereas the dash lines are with a 95% confidence level (i.e., p value5 0.05). (left) Computed using
the modified GF approach following Eq. (5). (right) Computed using the default GF approach as shown in Fig. 12
but added here for reference.
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method of measuring the linear part of the SST pattern effect.
Note that the nonlinear part of the responses always exists, for
which the GF is not designed to solve. Moreover, it is anticipated
that the Jacobian matrices would look different if the base state
changed. Such state dependence is not addressed in this study
but can be explored in future work.
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